» » Управление шлифовальным станком. Выбор электрооборудования станка. О торце-кругло-шлифовочных устройствах с ЧПУ

Управление шлифовальным станком. Выбор электрооборудования станка. О торце-кругло-шлифовочных устройствах с ЧПУ

/О 5 В 24 ИСАНИЕ ИЗОБРЕТЕН АВТОРСКОМ ИДЕТЕЛ ЬСТВУ(54) СИСТ ВАЛЬНЫМ (57) Испол кругло- и пл фовал ьных содержит д щий деталь и толщины(Ю К машиностроеано при автоьных, плосковальных станигнал, из коые значения, ь формы оба следует оть вследствие стотных поастотных дебыть по за прот припус уммато рующе ачено лучеотип, ка, и р, псе звеГОСУДАР СТВ Е ННЫЙ КОМИТЕТПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМПРИ ГКНТ СССР(71) Тольяттинский политехнический институт и Волжское объединение по производству легковых автомобилей(56) Авторское свидетельство СССРМ 402457, кл, В 24 В 49/00, 1971,Авторское свидетельство СССРМ 689821, кл, В 24 В 49/00, 1977,ЕМА УПРАВЛЕНИЯ ШЛИФОСТАН КОМьзование; при автоматизации оскошлифовальных и торцешлистанков. Сущность: устройство атчик припуска, контролирую- , и два задатчика уровня биений обрабатываемой детали, соедиИзобретение относится книю и может быть использовматизации круглошлифовалшлифовальных и торцешлифоков.Известно устройство, содержащее частотный датчик, схемы совпадения, частотный детектор, схемы сравнения и блок автоматики, В процессе активного контроля детали, имеющей погрешность формы, выходной сигнал датчика промодулирован частотой, девиация которой пропоциональна изменению формы контролируемой поверхности. С помощью частотного детектора схем сравнения и совпадения выделяется ненных с входами соответствующих пороговых устройств и схему логических элементов, осуществляющую оптимальное управление процессом шлифования детали - получением максимального размера высоты детали при минимальной величине биений путем воздействия на механизм подачи суппорта станка, Датчик припуска соединен с входом первого запоминающего устройства и с вторым входом первого вычитающего устройства, Выход запоминающего устройства соединен с входами вычитающих устройств. Выход первоговычитающего устройства подключен к входу запоминающего устройства, выход которого соединен с вторым входом первого порогового устройства и вычитающего устройства, выход котородподключен к входу второго порогового устройства, Выходы пороговых устройств через схему и подключены к механизму управления подачей. 2 ил. амплитудно-модулированный сторого выделяют экстремальнхарактеризующие погрешнострабатываемой детали.Из недостатков устройствметить его невысокую точностнелинейных искажений и чагрешностей, характерных для чтекторов.Лучшие результаты могутны с устройством, принятымУстройство содержит датчикдифференцирующих звеньев, сроговые устройства и корректино. Устройство предназн50 55 управления режимом обработки по ступенчатому алгоритму: черновое шлифование - чистовое шлифование - выхаживание, Для уменьшения погрешности размеров готовых деталей, вызванной погрешностью формы заготовок, в устройстве предусмотрено выделение сигнала, характеризующего погрешность формы, путем многократного дифференцирования исходного сигнала измерительной информации, Вырабатываемой затем электронной системой корректирующий сигнал управляет величиной припуска на выхаживание, т,е. осуществляется самонастройка припуска на выхаживание в функции погрешности формы,К числу недостатков устройства следует отнести значительную погрешность в определении характеристик формы деталей и величины корректирующего сигнала, что связано с дифференцированием и раз исходного сигнала датчика припуска.Другим недостатком, характерным для обоих устройств, является отсутствие сигнала измерительной информации, который определяет средний размер детали в каждый момент времени, Данная информация необходима при построении адаптивных циклов управления режимом обработки, когда используется программное управление, например, скоростью поперечной подачи шлифовального суппорта в функции текущего припуска, а коррекция программы осуществляется в функции измеряемой величины погрешности формы,Целью изобретения является повышение точности работы устройства.На фиг, 1 представлена блок-схема предлагаемого устройства; на фиг, 2 - форма сигнала измерительной информации с составляющей погрешности формы.Устройство содержит датчик припуска 1, контролирующий деталь 2, два пороговых устройства 3 и 4, первые входы которых соединены с соответствующими эадатчиками уровней биений 5 и толщины диска 6, механизм управления поперечной подачей 7, подключенный к шлифовальному суппорту 8, два запоминающих устройства 9 и 10,два вычитающих устройства 11 и 12 и схему И 13, Датчик припуска 1 срединен с входом первого запоминающего устройства 9 и с вторым входом первого вычитающего устройства 11. Выход первого запоминающего устройства 9 соединен с первыми входами первого и второго вычитающих устройств 11 и 12. Выход первого вычитаю- щего устройства 11 подключен к входу второго запоминающего устройства 10, выход которого соединен с вторыми входами пер 10 15 20 25 30 35 40 45 вого порогового устройства 3 и второго вычитающего устройства 12, Выход второго вычитающего устройства 12 подключен к второму входу второго порогового устройства 4. Выходы первого и второго пороговых устройств 3 и 4 через схему И 13 подключены к входу механизма управления поперечной подачей 7.На фиг, 2 кривая 14 описывает изменение среднего размера ф) в цикле шлифования детали. Кривая 15 описывает изменение величины биения д(т) детали в цикле ее шлифования.Устройство работает следующим образом. При обработке детали 2 (диск переднего тормоза автомобиля) необходимо контролировать два геометрических параметра; высоту кромки диска и и биение д поверхности а относительно базы обработки, Результат обработки детали должен удовлетворять требованиям додоп, (2) где йдоп, ддоп допуски на высоту ромки диска и биение поверхности а диска относительно базы обработки,Из (1) и (2) следует, что оптимальное управление режимом шлифования данной детали заключается в получении максимального размера высоты кромки и при минимальном уровне биений д и осуществляется в соответствии с алгоритмом типа Чс = ф, д), Получение сигналов измерительной информации о величине биений д(т) и высоте кромки диска п(т) осуществляется следующим образом, Датчик припуска 1 преобразует измеренное значение ф) в электрический сигнал О(с), который промодулирован по амплитуде сигналом Щт), характеризующим величину погрешности формы ф) (фиг. 2). Первое запоминающее устройство 9 выделяет и запоминает из сигнала измерительной информации О(1) его максимальное значение Омакс, которое поступает на первые входы вычитающих устройств 11 и 12. На выходе вычитающего устройства 11 образуется сигнал О(с), характеризующий погрешность формы детали (биения) относительно базы обработки Щ 1) = О макс(1) - О(1). (3) Максимальное значение сигнала биений О(т), полученное за один оборот обрабатываемой детали О (с) = Ор макс запоминается во втором запоминающем устрой- СТВЕ 10, С ВЫХОДа КотОРОГО СИГНаЛ О макспоступает на вторые входы первого порогового устройства 3 и второго вычитающего устройства 12, Первое пороговое устройство 3 осуществляет сравнение измеренной величины биений Оф) с заданным значени ем О дол, поступающим с выхода эадатчика 5.Во втором вычитающем устройстве 12 определяется величина сигнала О(1), выражающая среднее значение высоты кромки 10 диска и за определенный промежуток времени, например, эа один оборот детали Оо(1) = Омакс(т) - 0,5 Омакс (т), (4)15Сигнал Оф) поступает на второй вход второго порогового устройства 4, которое осуществляет сравнение его с заданной величиной Оьр,. Выходы пороговых устройств 3 и 4 подключены к схеме и, 20 осуществляющей логическую операцию в соответствии с алгоритмом (1) и (2).В результате процесс шлифования детали 2 осуществляется до тех пор, пока погрешность формы ф) детали уменьшается 25 до заданного значения ддоп. Процесс шлифования может прекратиться и в том случае, если погрешность формы не уменьшилась до заданной величины, а среднее значение высоты кромки диска ф) стало меньше до пустимого значения одоп.Экспериментальная проверка проведена на торцешлифовальном станке "Джустина", осуществляющим шлифование передних тормозных дисков, на основе электронной управляющей системы модели ЭП 4 К 926, Испытания показали, что коррекция программы управления поперечной подачи на основе измерения величины биения детали, определяемой предлагаемым устройством, осуществляется с абсолютной погрешностью 1,5.2 мкм, что в несколько раз меньше, чем в устройстве - прототипе. За счет повышения точности устройства стало возможным увеличить высоту кромки обрабатываемого ушка переднего тормоза в среднем на 100 мкм, что, в свою очередь, позволяет получить значительную экономию материалов и труда.Формула изобретения Система управления шлифовальным станком, содержащая датчик припуска, два пороговых устройства, первые входы которых соединены с соответствующим задатчиком уровня, механизм управления поперечной подачей, подключенный к шлифовальному суппорту, о т л и ч а ю щ а я с я тем, что, с целью повышения точности, в нее введены два запоминающих, два вычитающих устройства и схема И, причем датчик припуска соединен с входом первого запоминающего устройства и с вторым входом первого вычитающего устройства, выход первого запоминающего устройства соединен с первыми входами первого и второго вычитающих устройств, выход первого вычитающего устройства подключен к входу второго запоминающего устройства, выход которого соединен с вторыми входами первого порогового устройства и второго вычитающего устройства, выход которого подключен к второму входу второго порогового устройства, а выходы первого и второго пороговых устройств через схему И подключены к входу механизма управления поперечной подачей,1764972 Фи актор Т,Пилипе Заказ 3343 Тираж Подписное ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москва, Ж, Раушская наб.,4/5 Од фи гта Составитель АРешетовТехред М.Моргентал Корректор Е,Папп оизводственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101

Заявка

4890458, 13.12.1990

ТОЛЬЯТТИНСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ, ВОЛЖСКОЕ ОБЪЕДИНЕНИЕ ПО ПРОИЗВОДСТВУ ЛЕГКОВЫХ АВТОМОБИЛЕЙ

РЕШЕТОВ АНАТОЛИЙ ГРИГОРЬЕВИЧ, ДЕМЬЯНЕНКО ВАЛЕРИЙ ВЛАДИМИРОВИЧ, БУКАЕВ ПЕТР НИКОЛАЕВИЧ, ШЕЛЕМЕТЬЕВ ВЛАДИМИР ДМИТРИЕВИЧ, КАЗАНКОВ ЮРИЙ ФЕДОРОВИЧ

МПК / Метки

Код ссылки

Система управления шлифовальным станком

Похожие патенты

Для статического анализа случайных процессов, Целью изобретения является повышение точности измерения, а также упрощение устройства за счет введения элемента ИСКЛЮЧАЮЩЕЕ ИЛИ, коммутатора и реверсивного счетчика. Работа устройства основывается на оценке результатов сравнения входного сигнала с двумя равномерно распределенными выходными сигналами геаторов пилообразных напряжений,.ОрловКорректор М.Пож дактор Э,Слиг аказ 7905/4 9 Тираж 673 ВНИИПИ Государственногопо делам изобретений 113035, Москва, Ж, Рауш одписнСР комитета ССи открытийкая наб., д. зводственно-полиграфическое предприятие, г.ужгород, ул. Проектна сравнения является входом устройства, первый н второй входы элементаИСКЛЮЧАЮЩЕЕ ИЛИ соединены с выходами первого и...

20, линии 21 - 30 связи.868742 Блок 16 задания адреса канала ввода-выво.да (фиг, 2) содержит формирователь 31 адреса канала ввода. вывода, схему. 32 сравненияадреса канала ввода-вывода, узел 33 контроляадреса канала ввода-вывода, коммутатор 34 вы.дачи адреса канала ввода-вывода и узел 35 уп.равления блока.Каждый блок выбора канала ввода-вывода(фиг. 3) включает формирователь 36 адресавнешнего устройства, схемы 37 и 38 сравнения,узел 39 контроля адреса, первый узел 40 согласования, регистры 41 - 43, узел 44 коммутации адреса канала ввода-вывода в первый регистр, узел 45 коммутации адреса канала ввода.вывода во второй регистр, дешифратор 46адреса канала ввода-вывода, узел 47 анализасостояния внешнего устройства, шифратор 48адреса канала...

Перспективной целью развития машиностроения является созда­ние комплексно-автоматизированных систем производства. Создание станков с ЧПУ позволяет создать комплексно-автоматизированные системы не только в сфере массового производства, но и при серийном производстве.

Под системой числового программного управления в соответствии с ГОСТ 20523-80 понимается совокупность специализированных устройств, методов и средств, необходимых для осуществления числового программного управления работой станков.

Числовое программное управление - управлений обработкой на станке по программе, заданной в специальном коде. Кодом назы­вают совокупность буквенных и цифровых символов, посредством которых информация может быть представлена в форме, удобной для передачи. на расстояние. Регулирование перемещений исполни­тельных органов станка, рабочих и холостых ходов инструмента, команды на смену инструмента и т. п. вводится в станок в виде управляющей программы.

Под управляющей программой понимают последовательность команд, обеспечивающих заданное функционирование рабочих орга­нов станка. Наибольшее распространение получил код ISO - 7bit. Управляющая программа записывается на программоноситель, кото­рым является перфорированная бумажная или магнитная лента. Устройство системы управления, служащее для храпения информа­ции, обычно называют блоком памяти. При получении информации система управления выдает команды на станок в виде электри­ческих импульсов. Каждый импульс соответствует определенному значению перемещения, называемого разрешающей способностью системы - ценой импульса. Одним из достоинств применения перфо­рированных лент является то, что в них легко вносить изменения программы, связанные с уточнением размеров заготовки или с совершенствованием технологического процесса.

Харьковским станкостроительным заводом им. С. В. Косиора выпускается круглошлифовальпый полуавтомат с ЧПУ модели ЗМ151Ф2, предназначенный для шлифования с одной установки ступенчатых валов с гладкими и прерывистыми цилиндрическими поверхностями. Обработка ступеней ведется последовательно одним кругом.

Краткая техническая характеристика станка

детали, мм……………………………………………………………… 200

Размеры шлифовального круга: диаметр,

высота, мм…………………………………………………………… 600X80

Диаметр детали, мм……………………………. 15-85

0,1-0,6
0,02-0,12
10

Гидросистема станка выполняет следующие функции: продольное реверсирование перемещений стола с 10 фиксиро­ванными скоростями;

развод губок измерительной скобы;

продольное перемещение измерительной скобы;

подвод и отвод щупа механизма осевой ориентации;

ввод и вывод измерительных приборов;

быстрый подвод шлифовальной бабки;

отвод пиноли задней бабки;

управление прибором правки круга;

перемещения шпинделя шлифовальной бабки для подторцовки. Конструктивные особенности станка. Полуавтомат мод ЗМ151Ф2 более чем на 60% унифицирован с полуавтоматом мод ЗМ151. В отличие от полуавтомата мод ЗМ151 на полуавтомате мод ЗМ151Ф2 пиноль задней бабки перемещается в направляющих ка­чения с предварительным натягом. На задней бабке смонтирован механизм для автоматического устранения конусности на шлифуемой поверхности. В качестве привода механизма поперечных подач используется электрический привод с двигателем постоянного тока. Быстрое установочное перемещение шлифовальной бабки на задан­ный размер осуществляется от электродвигателя. Длинные шли­фуемые поверхности обрабатываются уступами. Вращение изделия регулируется бесступенчато в диапазоне 50-500 об/мин. Компенса­ция износа шлифовального круга производится автоматически вводом коррекции командами измерительного прибора Для устране­ния конусности верхний стол может быть повернут на требуемый угол. Скорость подачи шпинделя шлифовальной бабки определяется настройкой дросселя. Механизм поперечных подач установлен на корпусе шлифовальной бабки. Станок оснащен механизмом осевой ориентации, который предназначен для установки базового торца изделия.

Полуавтомат ЗМ151Ф2 оснащен широкодиапазонным измери­тельным прибором активного контроля, который автоматически перестраивается при переходе с одного шлифуемого диаметра на другой. Измерительный прибор контролирует гладкие шлифуемые поверхности. Шлифование прерывистых поверхностей осуществляется по датчику-преобразователю, который контролирует перемещение шлифовальной бабки.

Полуавтомат обеспечивает точность размера по 6-му квалитету, шероховатость цилиндрических шлифованных поверхностей Ra = 0.32 мкм, торцовых поверхностей /?0=1,25 мкм.

Кроме автономных устройств управления станками с ЧПУ все большее значение приобретают системы с групповым управлением участком станков от центральной ЭВМ.

Характерным для общего направления развития машинострое­ния в условиях научно-технического прогресса является сокращение

сроков внедрения новых разработок в серийное производство, Сочетание высокой производительности, присущей специальным стан­кам, с гибкостью, свойственной универсальному оборудованию, сделало станки с ЧПУ одним из основных средств комплексной автоматизации серийного производства.

Числовое программное управление позволяет получать сложные движения механизмов не за счет кинематических связен, а благо­даря управлению независимыми координатами механизма по програм­ме, заданной в числовом виде. Требуемые параметры движения по каждой координате и согласование переметений обеспечиваются устройством ЧПУ. Повышение эффективности обработки при приме­нении станков с ЧПУ достигается за счет:

автоматизации управления циклом обработки, что создает возможность обслужить одним рабочим нескольких станков;

сокращения вспомогательного времени (перекрытия времени установки и закрепления деталей, ускорение холостых и установочных перемещений, установки инструмента на размер вне станка и др.); снижения затрат времени на настройку системы управления; сокращения и упрощения технологической оснастки; повышения точности обработки путем исключения переустановок заготовок, точной индексации стола, что дает меньшие погрешности, чем переустановки инструментов;

сокращения времени обработки применением устройств для от­счета перемещений. Станки с ЧПУ оснащаются устройствами цифро­вой индикации, на табло выводится информация не только о достигну­том размере, но также номер отрабатываемого кадра и номер коррекции.

Важным этапом в развитии систем ЧПУ было применение с 1966 г. интегральных схем. Интегральная схема - микроэлектрон­ный блок в виде цельного корпуса, содержащий то или иное коли­чество элементов схем и связей между ними, образованных за счет технологического процесса изготовления. Микроэлектроника - об­ласть электроники, охватывающая комплекс проблем по созданию надежных, экономичных микроминиатюрных устройств. С появлением больших интегральных схем (БИС) стало возможным монтировать все вычислительное устройство в одном микропроцессоре. Создание БИС в одном кремниевом кристалле позволило включить в себя тысячи транзисторов, которые, например, монтируются на площади менее 6,5 см2 и имеют около 40 выводов.

Шлифование на станках с адаптивным управлением. Совер­шенствование металлорежущих станков идет в направлении повы­шения эффективности использования машинного времени путем фор­сирования и оптимизации режимов обработки с учетом фактической твердости заготовки, припуска, изменения стойкости и режущей спо­собности инструмента н т. д. На таких станках обработка заготовок происходит не в полном соответствии с первоначально заданными в программе режимами, последовательностью и величиной перемеще­ний, а автоматически корректируется в зависимости от изменения условий в процессе обработки. Для определения этих условий станки оснащаются различными преобразователями: мощности, сил резания, температуры, вибраций и т. д, сигналы которых используются для изменения параметров обработки

Под адаптивной системой понимается устройство управления работой станка, позволяющее производить изменение определенных параметров процесса обработки (подачи, скорости главного привода и др.) в зависимости от текущих значений измеряемых величин. Адаптивное управление работой станка - система с автоматическим регулированием применительно к конкретным условиям обработки. При обычном управлении входные величины влияют на процесс без компенсации воздействия возмущений на управляющие па­раметры.

Применение адаптивных систем в станках с ЧПУ облегчается, так как в последних имеются регулируемые приводы подачи и главного движения. В современных адаптивных системах в качестве исходных могут быть использованы параметры:

точность размеров обрабатываемой заготовки, замеры которых производятся в процессе обработки (результаты измерений исполь­зуются для команды на подналадку положения шлифовального круга);

параметр шероховатости шлифуемой поверхности (измерение используется для подналадки скоростей и подач): в отдельных случаях шероховатость поверхности зависит от вибраций основных узлов станка, которые могут быть измерены акселерометром и использованы для подналадки режимов шлифования;

максимальный съем металла, который в ряде случаев огра­ничивается допустимым крутящим моментом на шпинделе станка или величиной упругого отжатия последнего;

максимальная производительность станка, которая иногда ог­раничивается износом и стойкостью режущего инструмента;

минимальная стоимость обработки; этот параметр наряду со стремлением к наибольшей производительности является основным при создании адаптивных систем управления.

Имеется два типа систем адаптивного управления: с предельным и с оптимальным регулированием.

Предельное регулирование обеспечивает постоянное протекание процесса резания несмотря на различные возмущения. В процессе обработки фиксируются один или несколько параметров и сравни­ваются с заданными граничными значениями. В зависимости от результатов этого сравнения путем изменения соответствующих вход­ных величин выравниваются фактическое и заданное значения основ­ного параметра. При черновой обработке в системах с предельным регулированием в основу принимаются составляющие силы резания, крутящий момент, мощность резания. При чистовой обработке критерием оценки служат достигаемые качество поверхности, точность размеров и формы заготовок.

Шлифовальный станок с адаптивным управлением обеспечи­вает следующие элементы автоматизации:

регулируемую подачу шлифовальной бабки, с тем чтобы усилие шлифования, приходящееся на единицу ширины круга, всегда оста­валось оптимальным (шлифование с управлением по усилию шли­фования);

автоматическую правку круга;

оптимальное управление числом оборотов заготовки произво­дится в зависимости от диаметра и материала заготовки.

Система адаптивного регулирования целесообразно сочетается с ЧПУ. В этом случае, кроме преимуществ по предельному или оптимальному регулированию, снижаются объем и стоимость программирования. Сочетание двух контуров управления - по точ­ности и по режимам резания позволяет назначать оптимальные режимы обработки при сохранении заданной точности. Возможно применение систем предельного регулирования совместно с системами управления от ЭВМ, которые могут производить расчет регулирующих параметров и граничных значений, запоминать фактический путь инструмента при комбинированном регулировании подачи и глубины. В более совершенных системах ЧПУ содержатся блоки адаптивного управления, при этом упрощается программирование. Технологи

приближенно задают подачу, а система, определив с помощью специальных датчиков условия резания, сама изменяет ее до опти­мального значения. В качестве примера оптимизация поперечной подачи может быть реализована за счет системы адаптивного управ­ления, разработанной в Вильнюсском филиале ЭНИИМСа. В основу конструкции системы адаптивного управления положены следующие соображения. На этапе чернового шлифования режим обработки ограничивается технологическими факторами, на этапе чистовой обработки - требованиями к точности обработки. В круглошлифо­вальном станке с помощью системы автоматического управления

используется информация о текущем размере заготовки и погреш­ности формы, получаемая с помощью настольной скобы индуктив­ного измерительно-управляющего устройства (рис. 59) с дополни­тельным датчиком / для замера радиуса обрабатываемой заготовки. На этапе чернового шлифования поддерживается постоянная мощ­ность привода круга, измеряемая с помощью датчика активной мощности 4. Сигналы от датчиков поступают в блок 7 и управляют механизмом поперечной подачи посредством следящего золотника 6. В начале цикла шлифования происходят ускоренное врезание до на­бора заданной мощности и шлифование с постоянной мощностью до тех пор, пока текущее значение погрешности формы заготовки в поперечном сечении, определенное как сумма амплитуды колеба­ний верхней губки измерительной скобы и фактической подачи на оборот детали, не станет больше заданного значения оставшегося припуска, измеренного с помощью ИУУ. Затем подача уменьшается таким образом, чтобы выдержать заданный оптимальный закон, обес­печивающий получение заготовки с заданной иекруглостью. На заключительном этапе текущий размер и погрешность формы в попе­речном сечении заготовки непрерывно контролируются. Сигнал, про­порциональный размеру, поступает от ИУУ, а для получения сигнала, пропорционального погрешности формы детали, используют дополнительный датчик, установленный на скобе прибора. Испытания системы показали, что благодаря сокращению времени черновой и чистовой обработки общее время цикла сокращается примерно на 50 % при стабилизации некруглости в партии обработанных заготовок.

Существует огромное количество технологических процессов, выполнение которых позволяет получить деталь с необходимыми размерами, формой и качеством поверхности. На протяжении многих лет заводы по обработке металла использовали специальные устройства, которые называют станками. Существует несколько технологических процессов, среди которых отметим обработку шлифованием. Шлифованием можно изменить механическим воздействием качество поверхности, а также ее форму. За многие годы развития сферы обработки металла появилось довольно много разновидностей оборудования, каждый из них имеет особую схему работы, что отражается на чертеже.

Предназначение оборудования

Шлифовальный станок – устройство, которое используется для обработки различных изделий из металла, древесины, пластика и другого материала. Несколько десятилетий назад оборудование создавали для обработки с малой точностью, технически конструкция не позволяла доводить размеры деталей до высокой точности, но все же характеристики, которыми обладает шлифовальный станок, давали возможно проводит финишную отделку.

Использовать шлифовальный станок можно для решения следующих технологических задач:

  1. Изменения формы поверхности цилиндрической, квадратной и иной заготовки. Шлифовальное оборудование в зависимости от абразивного материала может использоваться для обработки различного металла, можно провести снятие относительно небольшого слоя материала.
  2. Изменения шероховатости поверхности – основное предназначение, для которого создавался шлифовальный станок. Устройство может снимать десятки миллиметров металла или другого материала.
  3. В некоторых случаях шлифовальный станок используется для проведения заточки. Это связано с тем, что устройство используется для снятия металла, если правильно расположить режущую кромку, то есть возможность провести заточку.

Достигнуть результата при использовании ручных инструментов, как если использовать шлифовальное оборудование, практически невозможно. Производительность также очень велика, существует как домашний, так и промышленный вариант исполнения. Эксплуатация устройства требует технического обслуживания, что также следует учитывать.

Классификация

Как ранее было отмечено, существует довольно много чертежей и схем, по которым производят шлифовальный станок. Это связано с тем, что форма и размеры деталей определяют то, как будет проводиться обработка, и какой вид будет иметь шпиндель, станина шлифовальное оборудование.

По типу установки можно провести следующую классификацию:

  1. Настольный. Современные чертежи и схемы настольных станков определяют то, что они могут использоваться в быту. При этом техническое обслуживание не принесет много проблем, электропотребление незначительно, управление не составляет особого труда. Однако настольный вариант исполнения имеет меньшую производительность, а также функциональность.
  2. Современный промышленный вариант исполнения имеет высокую производительность, схема и чертежи модели определяют то, что модели имеют компактные габаритные размеры. Технически они совершеннее тех моделей, которые производились на заводах в прошлом тысячелетии.
  3. Шлифовальный станок, произведенный на заводах Советского Союза, также еще часто встречается в цехах. Их чертежи и схемы изучаются в учебных заведениях при получении соответствующей квалификации. Однако техническое обслуживание подобного оборудования значительно усложняется, так как необходимых инструментов и деталей уже не производят.

По предназначению можно выделить следующие группы:

  1. Круглошлифовальные – наиболее распространенные модели, которые используются для обработки цилиндрических и конических деталей. Подобные станки разделяются на несколько групп по классу точности. Производятся они с середины 90-х годов. Некоторые модели производились для заготовок с высоким диаметральным и линейным размером.
  2. Внутришлифовальные модели получили меньшее распространение, но все часто используются на металлообрабатывающих заводах. Внутришлифовальные станки могут быть бытового и промышленного предназначения, их производительность зависит от оснастки и степени автоматизации процесса обработки. Использовать внутришлифовальные модели для изменения цилиндрических внутренних поверхностей, отверстий различной формы. Оснастка в значительной степени может изменить технические характеристики внутришлифовального станка.
  3. Плоскошлифовальная группа имеет схему, которая позволяет проводить работу по доведения шероховатости и размеров плоских и сопряженных поверхностей до нужных значений. Шпиндель в этом случае расположен так, что шлифовальный станок может применяться для осуществления работы, связанной с плоской поверхностью.
  4. Бесцентрошлифовальная группа крупносерийном производстве. Схема и чертеж, которые характерны подобной группе, обуславливают упрощение процесса обслуживания, а также технические характеристики позволяют автоматизировать процесс, повысить производительность.
  5. Хонингование – процесс доведения размеров поверхности до высокой точности, когда отклонение составляет всего несколько долей миллиметра. Схема расположения всех элементов конструкции, которой обладает шлифовальный станок этой группы, позволяет проводить обработку как цилиндрических, так и плоских поверхностей. При помощи ручных инструментов достигнуть подобного результата невозможно, управление позволяет изменять характеристики обработки в зависимости от поставленной задачи.

При этом круглошлифовальные варианты исполнения можно разделить на следующие группы:

  1. универсальные станки – могут использоваться для шлифования различных цилиндрических и конических заготовок, характеристики моделей позволяют значительно расширить область применения. Управление универсальным станком может проводиться механически или при помощи автоматизированной системой ЧПУ;
  2. простые модели – шлифовальное оборудование, которое применяется для определенной группы заготовок. Схема и характеристики простых моделей определяет то, что только отдельные группы деталей можно обработать при их использовании. В последнее время станки, относящиеся к этой группе, практически не производятся. Это связано с тем, что их покупка зачастую не обоснована. Часто их производят под заказ при организации массового производства.



Учитывая столь большое распространение круглошлифовальных станков, проведем рассмотрение особенностей конструкции. Управление поворотным рабочим столом, а также характеристика, позволяющая проводить поворот детали, определяет универсальность модели. Схема конструкции имеет шпиндель, который может поворачиваться вокруг вертикальной оси. Некоторые модели имеют дополнительные шпиндельные бабки, которые позволяют изменять степень шероховатости отверстий различной формы.

Числовое программное управление

ЧПУ на протяжении многих лет разрабатывалось для того, чтобы повысить производительность и упростить задачу, повысить точность получаемых размеров. Чертежи многих деталей имеют размеры с минимальными допусками, использовать ручной инструмент для решения подобной задачи нельзя. Поэтому если чертежи имеют подобные допуски, следует использовать механизированный метод обработки.

Многие проблемы не позволяли использовать числовое программное управление при создании шлифовального станка. Примером можно назвать систему смазки, а также позиционирование шпинделя. Управление при помощи ЧПУ определяет высокоточное позиционирование шпинделя, автоматизацию системы смазки.

Несмотря на огромное количество достоинств системы ЧПУ довольно сложно найти конструкцию с подобной технологией автоматизации. Это связано с тем, что подобное оборудование используются крайне редко в крупносерийном и массовом производстве.

ЧПУ определяет точное позиционирование шпинделя. Однако стоит учитывать, что шпиндель должен позиционироваться с учетом используемой оснастки. Поэтому на чертеже указывается то, какая используется оснастка для шлифовальных станков.

Обслуживание конструкции с ЧПУ значительно усложняется, так как внесение изменений может привести к сбою в работе. Периодически следует проводить наладку оборудования для поддержания точности изменения размеров, качества шероховатости.

Существует довольно много разновидностей системы ЧПУ, которые разделяются по типу используемой программы для описания траектории движения абразивного круга, описания скорости вращения шпинделя и величины подачи.

Охлаждение

Если смазка позволяет продлить срок службы конструкции, то охлаждение – значительно увеличивает срок эксплуатации абразивного материала. Чертежи создаются с учетом того, что во время соприкосновения с абразивным материалом поверхность не будет нагреваться, как и абразивный материал. Для этого шпиндель может иметь систему подачи охлаждающей жидкости. Бытовые модели имеют ванну с водой, которая также будет охлаждать зону обработки.

Обслуживание системы охлаждения заключается в необходимости постоянного пополнения резервуара с охлаждающей жидкостью.

В заключение отметим, что существует довольно много современных моделей, которые имеют высокую производительность, простоту в использовании, а также многофункциональность. Многие из них подходят для бытового и промышленного использования.

Различаются шлифовальные станки с ЧПУ от устройств, имеющих ручное управление тем, что обеспечение производительности работ на станке с ЧПУ часто не зависит от самого процесса шлифования. Оно в большей степени зависит от уменьшения времени, затраченного на обработку металла и запрограммированного автоматического управления процессом шлифовальных работ.

Шлифовальные станки с ЧПУ подходят, как правило, для окончательного чистового обрабатывания поверхностей деталей различными абразивами, алмазными кругами. Такая обработка производится путем снимания верхних слоев металла, чтобы придать поверхностям наилучшую чистоту.

Такими шлифовальными устройствами производятся следующие операции:

  • обдирка;
  • разрезание;
  • отрезка заготовок;
  • точное обрабатывание вращательных поверхностей, зубчатых колес, заточку различных инструментов.

О типах шлифовальных устройств

Обычно системы с числовым запрограммированным управлением устанавливают на устройства такого типа:

  • плоско-шлифовальные для обрабатывания обычных плоскостей;
  • кругло-шлифовальные устройства, для шлифовки коленчатых валов;
  • внутришлифовальные станки для профильной шлифовки отверстий;
  • точильно-шлифовальные, для затачивания инструментов станочного и ручного типа, зачистки деталей, обработки сварных или простых конструкций;
  • контурно-шлифовальные;
  • заточные, для слесарных работ, типа снятия фасок, заусенцев, затачивания любых инструментов, вплоть до заточки фрез разного вида и сверл;
  • бесцентрово-шлифовальные виды устройств, для врезной и непрерывно-сквозной шлифовки.

О технических особенностях некоторых устройств с ЧПУ

Изготовление подобных станков для работ по шлифовке бывает связано с определенными сложностями, которые характеризуются такими техническими факторами:

  • с одного боку, необходимо добиваться хорошего качества и довольно высокой точности шлифовальных работ, с наименьшим рассеиванием по размерам кругов;
  • с другого, необходимо учитывать погрешность в точных размерах шлифовального рабочего круга, зависимые от его износа.

В таких случаях требуется, чтобы на подобном шлифовальном станке ЧПУ, имелись специальные механизмы для автоматического компенсирования изнашиваемости этого инструмента. Подобные механизмы призваны компенсировать (возместить):

  • некоторую деформацию;
  • небольшую погрешность в температурном режиме;
  • изменения в припусках, допустимых на обрабатываемых заготовках;
  • любые погрешности станочных приспособлений по заданным координатам.

Важно. Для таких кругло-шлифовальных типов устройств, к примеру, эти механизмы могут обеспечить постоянную возможность измерения размера заготовки по диаметру во время ее обработки. Причем погрешность в измерении не превысит больше 2·10 -5 мм. Продольное же перемещение такого стола контролируется, имея погрешность всего 0.1 мм.

Обычно для шлифовочного типа устройств употребляют специальные системы CNC (от англ. ЧПУ), управление которыми реализовывается по ординатам от 3 до 4. А если в станках задействовано несколько шлифовочных кругов, то такое управление будет производиться по 5-6-8 разным ординатам. Причем взаимодействие оператора со встроенной системой ЧПУ часто производится в режиме диалога при помощи дисплея. К тому же для повышения надежности такие системы обустраиваются специальными диагностическими модулями.

О системах ЧПУ

С целью корректного управления механизмами для правки в станках употребляются такие программные системы, которые:

  • являются замкнутыми для компенсирования температурных деформаций и геометрических неточностей;
  • имеют возможность измерения с хорошей разрешающей способностью, для обеспечения небольших допусков на точное позиционирование;
  • имеют возможность автоматической компенсации изнашиваемости круга;
  • смогут управлять частотой кругового вращения, скоростью подач.

При управлении подобными системами ЧПУ возможно координировать функционирование многокоординатных бесцентрово-кругло-шлифовочных устройств. Для этого встроенной системой употребляются специальные модули, рассчитывающие:

  • любые траектории шлифовочных приспособлений;
  • необходимые корректировочные действия;
  • взаимосогласованный диалог оператора с обслуживающим устройством.

Важно. Существование многокоординатных систем ЧПУ придает больше универсальности этим производственным устройствам, позволяет эффективно воздействовать на любые процессы шлифовки.

О кругло-шлифовочных устройствах

В любых шлифовальных станках ЧПУ, наибольший производимый эффект достигается при обработке поверхностей одной установкой специальных многоступенчатых деталей, например:

  • шпинделей закрепления заготовок;
  • валов электрических двигателей;
  • турбинных элементов;
  • редукторов регулирования вращательных частот.

В таких случаях производительность значительно повышается при снижении дополнительного времени, которое предназначено для:

  • устанавливания требуемых заготовок и снятия уже обработанных готовых изделий;
  • переустановки с целью последующего обрабатывания шейки вала;
  • необходимых измерений.

На этих кругло-шлифовальных числовых станках запрограммированная обработка различных многоступенчатых валов достигает конца при сокращении времени почти в 1,5-2 раза, если сравнивать их со станком обычного управления.

О типах бесцентрово-шлифовальных устройств

Станки этого вида обычно используются для:

  • обрабатывания различных деталей, любой длины, с большими или маленькими диаметрами;
  • шлифовки деталей с достаточно сложными внешними профилями.

У этих станков обычно бывает высокая производительность и очень точная обработка. Но, к сожалению, для мелкосерийных и небольших индивидуальных производств их использование затруднительно, так как довольно сложно делать переналадку этих устройств, так как для этого потребуются значительные временные затраты, обслуживающий персонал, имеющий высокую квалификацию.

Такие сложности связаны с технологическими особенностями этих шлифовочных станков, к примеру:

  • существование в них ведущих, шлифовочных заточных кругов;
  • наличие специальных правящих устройств, которые обеспечивают придание необходимых конфигураций поверхностям любых кругов (шлифовочного и ведущего вида);
  • фиксация закрепления опорного вида специальных ножей;
  • присутствие механизмов для компенсирования подач нужного типа кругов, обрабатывания изделий;
  • установка требуемого положения для загрузочно-разгрузочных видов устройств.

О торце-кругло-шлифовочных устройствах с ЧПУ

Обычно, в устройствах, управляемых программами, предусматривают большое число координат. К примеру, в шлифовальном приспособлении этого типа может быть до 10 управляемых ординат, из них три основных и минимум шесть вспомогательных для лучшего позиционирования:

  • осевой ориентации заготовок относительно круга;
  • смещения бабки заднего типа для корректировки и обработки заготовок;
  • правки кругов для обеспечения возможности обработки любых профилей;
  • осей устройства для активного контроля;
  • лучшего поворота столов для обрабатывания конусов.

Для обработки разного вида геометрических форм изделий шлифовальными станками ЧПУ, установлены специальные программы:

  • диспетчер выбора режимов;
  • специальный модуль, управляющий приводом;
  • определяющий координаты точек интерполятор.

При серийном производстве такие шлифовальные станки с ЧПУ используются с применением программных систем, что дает возможность для гибкой настройки цикла правки, шлифовки, существенно влияет на скорость переналадки станков и обрабатывания самых разных деталей. К тому же такие многокоординатные системы придают больше универсальности станкам, стабильной эффективности управления всеми процессами.