» » Ультрафильтрация сточных вод. Система ультрафильтрации воды: достойное качество и невысокая цена Преимущества способа ультрафильтрации

Ультрафильтрация сточных вод. Система ультрафильтрации воды: достойное качество и невысокая цена Преимущества способа ультрафильтрации

А. П. Андрианов, инж. (МГСУ); А. Г. Первов, д-р техн. наук (ГНЦ РФ НИИ ВОДГЕО)

Все больше внимания в настоящее время уделяется поиску новых перспективных методов очистки воды, более компактных, дешевых, простых в эксплуатации по сравнению с традиционными. К их числу относятся мембранные методы: ультрафильтрация и нанофильтрация.

Оба процесса имеют сходное аппаратурное оформление, но в технологическом плане имеются принципиальные различия. Если при эксплуатации нанофильтрационных установок накопившиеся в процессе работы на поверхности мембран осадки (задержанные из воды загрязнения) удаляются с помощью химических промывок (т. е. с применением реагентов), то при эксплуатации ультрафильтрационных мембран удаление загрязнений с поверхности мембран производится обратным током, как у фильтров с зернистой загрузкой. Поэтому безреагентная ультрафильтрация считается за рубежом технологией будущего .

Ультрафильтрация – это мембранный процесс, занимающий промежуточное положение между нанофильтрацией и микрофильтрацией. Ультрафильтрационные мембраны имеют размер пор от 20 до 1000 Å (или 0,002–0,1 мкм) и позволяют задерживать тонкодисперсные и коллоидные примеси, макромолекулы (нижний предел молекулярной массы составляет несколько тысяч), водоросли, одноклеточные микроорганизмы, цисты, бактерии и вирусы. Таким образом, использование мембранной ультрафильтрации для очистки воды позволяет сохранить ее солевой состав и осуществить осветление и обеззараживание воды без применения химических веществ, что делает эту технологию перспективной с экологической и экономической точек зрения.

Технология обработки воды с помощью ультрафильтрационных мембран заключается в «тупиковой» фильтрации воды через мембрану без сброса концентрата. Такой режим работы позволяет сократить расход воды на собственные нужды станции очистки и уменьшить ее общее энергопотребление. Процесс фильтрования длится 20-60 мин, после чего следует обратная промывка мембраны. Для этого часть очищенной воды под давлением подается в фильтратный тракт в течение 20-60 с. В процессе обратной промывки вода уносит с поверхности мембран слой накопившихся загрязнений. На рис. 1 показаны устройство и схема работы ультрафильтрационных рулонных элементов.

Рис. 1. Ультрафильтрационный модуль

а - рабочий режим; б - режим промывки; 1 - исходная вода; 2 - фильтрат; 3 - рулонный элемент; 4 - сброс концентрата; 5 - обратная промывка фильтратом

В процессе длительной работы производительность мембранных аппаратов постепенно уменьшается, так как на турбулизаторной сетке, на поверхности и на стенках пор мембран сорбируются различные вещества и отлагаются частички загрязнений, увеличивающие общее гидравлическое сопротивление мембранных аппаратов. Для восстановления первоначальной производительности несколько раз в год проводится химическая промывка мембранных аппаратов специальными кислотными и щелочными реагентами для удаления накопленных загрязнений.

При конструировании систем очистки воды на основе метода ультрафильтрации основной задачей, встающей перед проектировщиком, является правильное определение продолжительности прямого фильтрования, а также частоты и интенсивности обратных промывок. Эти параметры зависят от качества исходной воды и определяются исходя из оптимальных соотношений производительности ультрафильтрационной установки и ее общего водопотребления . Правильный выбор режима промывки обеспечивает эффективную работу установки, заключающуюся в длительном сохранении производительности и качества фильтрата. Авторами на примере обезжелезивания подземной воды была разработана методика поиска оптимальных параметров работы ультрафильтрационной установки.

Эффективность обратной промывки зависит от ее интенсивности (при неизменном давлении промывки можно оперировать длительностью обратной промывки) τ и интервала между промывками (продолжительность фильтроцикла) t. При заданном времени τ эффективность работы установки зависит от продолжительности t: чем меньше t, тем эффективнее проходит отмывка мембраны от загрязнений, но тем больше образуется промывной воды. Исследования по оптимизации процесса обратной промывки ставят целью определить такие значения τ и t для различного состава обрабатываемой воды, которые соответствуют наибольшему количеству очищенной воды, полученной в течение времени Т. Исследования проводились на модельных растворах хлорида железа (III) на ультрафильтрационных мембранах марки УАМ-150. На рис. 2 показано снижение производительности мембранного аппарата с течением времени для разных концентраций железа в исходной воде.

Для определения оптимальных величин продолжительности фильтроцикла и промывки проводилось несколько серий экспериментов с различной продолжительностью обратной промывки. В каждой серии при фиксированной длительности обратной промывки менялась продолжительность фильтроцикла. Зависимости объема фильтрата и промывной воды от времени работы установки для одной серии экспериментов приведены на рис. 3 (продолжительность обратной промывки 30 с).

Поиск оптимальных соотношений длительности фильтроцикла и промывки производится по максимальной полезной производительности мембранного аппарата, которую можно определить как Vполезн = Vф - Vпр.. Сначала оптимальные точки находились отдельно для каждой продолжительности промывки. На рис. 4 показано определение оптимальной продолжительности фильтроцикла при длительности промывки 30 с. Затем полученные кривые зависимости полезного объема чистой воды от продолжительности фильтроцикла сводятся в один график (рис. 5), и по точкам максимумов этих кривых строится результирующая кривая, которая позволяет определить максимальное количество очищенной воды в зависимости от t и τ и соответственно найти оптимальную длительность обратной промывки. Эксперименты по приведенному алгоритму определения точки оптимума повторяются для различных концентраций железа в исходной воде.

Таким образом, полученные в результате проведенных экспериментов данные могут использоваться в качестве рекомендаций при разработке систем обезжелезивания на основе мембранной ультрафильтрации.

Рис. 3. Зависимость объема фильтрата (сплошная линия) и промывной воды (пунктирная линия) от времени работы установки при длительности промывки 30 с

продолжительность фильтроцикла, мин: 1, 1¢ - 15; 2, 2¢ - 30; 3, 3¢ - 60

Рис. 4. Определение оптимальной продолжительности фильтроцикла при длительности обратной промывки 30 с

1 - Vф; 2 - Vполезн; 3 - Vпр

Помимо указанных выше параметров на эффективность работы мембранных аппаратов влияет величина давления: рабочего и обратной промывки. При определении точки оптимума необходимо учитывать не только полезную производительность, но и объемы исходной и сбрасываемой в канализацию воды, при этом вычисление оптимальных соотношений длительности промывки и фильтроцикла производится на основе экономических расчетов.

Рис. 5. Определение оптимальной продолжительности промывки для разной продолжительности фильтроцикла продолжительность обратной промывки, с: 1 - 15; 2 - 30; 3 - 45; 4 - 60; пунктир - оптимум

В результате исследований разработаны технологические схемы и конструкции установок, предназначенных для обработки подземных вод с повышенным содержанием железа. В зависимости от состава исходной воды производится выбор той или иной модификации установок, отличающихся устройством аэрации и маркой используемых мембран. Вместе с удалением железа на установках обеззараживают воду без использования реагентов, удаляют сероводород и осветляют воду в случае выноса из скважины глинистых частиц.

Метод обезжелезивания воды с помощью ультрафильтрации рекомендуется применять при следующих показателях качества исходной воды: железо общее – не более 40 мг/л; щелочность – не более (1+Fe2+/28) мг-экв/л; рН – не менее 6 (водородный показатель воды после аэрации должен быть не менее 6,7-7); содержание Н2S – не более 5 мг/л; перманганатная окисляемость – не более 6-10 мг/л.

При содержании железа до 5 мг/л и сероводорода до 2 мг/л применяется схема с упрощенной аэрацией и фильтрованием на мембранах типа УАМ-500 и УАМ-1000. При содержании железа до 20-40 мг/л и сероводорода выше 2 мг/л используется аэрация эжектированием или барботированием и дополнительная упрощенная аэрация. При содержании в исходной воде трудноокисляемого железа, низких значениях рН и отсутствии растворенной углекислоты степень аэрации увеличивается. В зависимости от продолжительности процесса окисления двухвалентного железа и расчетной производительности установки обезжелезивания назначается объем аэрационных сооружений.

При наличии в исходной воде грубодисперсных примесей и песка в начале технологического тракта предусматривается сетчатый самопромывающийся фильтр с размером ячеек 100- 200 мкм. Внешний вид и принципиальная технологическая схема установки приведены на рис. 6 и 7. В зависимости от содержания железа и мутности исходной воды потребление воды на собственные нужды станции составляет не более 3-5 %, удельная потребляемая мощность 1,5-2 кВт∙ч/м3.


Рис. 7. Технологическая схема обезжелезивания подземных вод с использованием ультрафильтрации (при содержании железа в исходной воде не более 5 мг/л)

Обратный осмос

Обратный осмос является одним из перспективных методов водоподготовки. Применяется для обессоливания вод с солесодержанием до 40 г/л, причем границы его использования постоянно расширяются. Анализ развития технологий обессоливания воды показывает, что наблюдается интенсивное внедрение метода обратного осмоса и даже вытеснение им таких отработанных методов, как дистилляция воды и электродиализ.

Обессоливание (очистка воды от растворенных солей) достигается путем фильтрования под давлением исходной воды через специальную полупроницаемую мембрану, при этом происходит процесс перехода воды из более концентрированного раствора в менее концентрированный раствор.

Степень задержания солей может достигать 99,6%.

Мембранная очистка позволяет наряду с удалением из воды токсичных органических и неорганических загрязнений гарантировать и ее полное обеззараживание.

Обратноосмотическое фильтрование происходит на молекулярном уровне и требует повышенного качества исходной воды.

Это требование обеспечивается установкой надежных систем предварительной очистки, поскольку разовые выбросы загрязнений могут быть опасными для тонкопористых обратноосмотических мембран.

Для повышения устойчивости работы установки и увеличения срока службы фильтрующих элементов предусматривается возможность комплектации установки блоком химической промывки.

Нанофильтрация

Нанофильтрационный метод очистки воды основан на том же принципе, что и обратноосмотический. Т.е. это процесс перехода воды из более концентрированного раствора в менее концентрированный раствор под действием внешнего давления. Но нанофильтрационные мембраны удаляют частицы с большей молекулярной массой, чем обратноосмотические, поэтому работают на более низком давлении. Рабочее давление нанофильтрационных систем составляет 4-10 атм, в то время как рабочее давление обратноосмотических систем - 10-80 атм.

Современные нанофильтрационные мембраны снижают содержание одновалентных ионов (Cl, F, Na) на 40-70%, а двухвалентных (Ca, Mg) - на 70-90%. Таким образом, солесодержание очищенной воды по сравнению с исходной уменьшается после обработки на мембранных установках всего в 2-3 раза. Это позволяет получить физиологически полноценную питьевую воду, т.е. воду с солесодержанием, соответствующим биологическим потребностям человека.

Нанофильтрацию используют для концентрирования сахаров, двухвалентных солей, бактерий, белков и других компонентов, молекулярный вес которых свыше 1000 Дальтон. Селективность нанофильтрационных мембран увеличивается при повышении давления.

В процессе фильтрации происходит концентрирование веществ, которые не проходят через мембрану. В результате возможно образование пересыщенных растворов малорастворимых соединений и, как следствие, осадкообразование на поверхности мембраны. Это существенно снижает производительность очистки. Для того чтобы избежать подобных проблем, мембранная система должна быть укомплектована соответствующими блоками предварительной очистки.

Ультрафильтрация

Как все мембранные технологии, процесс ультрафильтрации состоит в пропускании исходной воды через мембрану под давлением. Однако рабочее давление в ультрафильтрации значительно ниже рабочего давления в нанофильтрации и обратном осмосе. Связано это с тем, что:

ультрафильтрационные мембраны не задерживают неорганические ионы, создающие самое большое осмотическое давление. Осмотическое же давление, создаваемое крупными частицами, которые задерживаются ультрафильтрационной мембраной, часто ниже 1 атм.

гидродинамическое сопротивление ультрафильтрационной мембраны значительно меньше, чем сопротивление обратноосмотических и нанофильтрационных мембран из-за большего размера пор. Это позволяет достигать высокой производительности при достаточно низком давлении.

Ультрафильтрационная мембрана задерживает коллоидные частицы, бактерии, вирусы и высокомолекулярные органические соединения. При этом нижний предел отделяемых растворенных веществ соответствует молекулярным массам в несколько тысяч.

В процессе фильтрации поры мембраны загрязняются отложениями сконцентрированных примесей. Ультрафильтрационные мембраны можно промыть обратным током - потоком воды со стороны фильтрата.

Таким образом, использование мембранной ультрафильтрации для очистки воды позволяет сохранить ее солевой состав и осуществить осветление и обеззараживание воды без применения химических веществ, что делает эту технологию перспективной с экологической и экономической точек зрения.

А вы знаете, что современное эффективное решение проблем водоочистки – это функциональная установка для ультрафильтрации воды. Используемая комбинированная технология обеспечивает удаление взвесей, устраняет мутность, производит дезинфекцию. На сегодня это один из самых экономичных и экологичных способов очистки жидкости, не требующий предварительной водоподготовки и использования реагентов.

Суть метода

Ультрафильтрация воды относится к одной из баромембранных технологий. Ее качественные показатели и алгоритм работы находятся в промежутке между обратноосмотичес кой системой и микрофильтрацией. Сверхтонкая (ультратонкая) очистка предполагает пропускное отверстие в фильтре из трубчатого композита (капиллярном) размером 0,002…0,01 мкм. Через фильтрующие элементы микрофильтрации проходят частицы размером от 10 до 0,05 мкм. делает воду почти стерильной, отсекая загрязнения размером до 0,0001 микрон.Сквозь мембрану свободно проходят молекулы воды, ионы, но, в то же время, отсекаются крупномолекулярные примеси-загрязнители. Поэтому мембранные аппараты являются главным звеном ультрафильтрацио нной системы. Метод используется в автоматических водоочистительны х установках для подготовки воды на предварительном уровне:

  • морской;
  • поступающей из скважин, открытых водоемов;
  • подаваемой на обратноосмотичес кие очистители.

В установках обратного осмоса тоже происходит очистка воды – ультрафильтрация же характеризуется более широкими технологическими возможностями. Конструктивно агрегаты выполнены в виде оболочки (корпуса), где ортогонально установлены мембраны – фильтры. Основная конструкция может быть дополнена ультрафиолетовым обеззараживателе м. Система работает с проточной водой в заданном режиме и может монтироваться на вводе водопровода в дом или отдельную квартиру.Важно! Метод ультрафильтрации воды позволяет получать жидкость стабильно высокого качества в постоянном режиме, независимо от того, какой была исходная вода до очистки.

Какие примеси удаляются

Производительность установки напрямую зависит от типа мембран, конструктивных особенностей фильтрационных модулей, режима их работы. Подаваемая под напором вода проталкивается сквозь несколько фильтрующих элементов (мембран). По ходу она освобождается от:

  • частиц ржавчины, попавших в нее с внутренних поверхностей старых водопроводных труб;
  • находящихся в водном растворе органических соединений и неорганических примесей.

На выходе получается вода без вирусов и бактерий, не требующая доочистки, готовая к употреблению.

Очень важно! Фильтры ультрафильтрации воды, задерживая вредные для организма человека примеси, пропускают сквозь себя минералы, соли, полезные для его здоровья, сохраняя натриевый и кальциевый состав воды.

Особенности монтажа ультрафильтрационных установок

Вниманию потребителей предлагаются ультрафильтрационные мембранные установки различной производительности и вариантов исполнения. Благодаря минимальным размерам они эргономично вписываются в дизайн в процессе строительства или ремонта помещения, компактно монтируются в уже готовую обстановку, сокращая размер площади помещения под водоподготовку.

Системы ультрафильтрации воды имеют небольшие габариты, отсутствие специальных отсеков под реагенты и компактный электронный умягчитель, не требующий больших площадей.

Система ультрафильтрации воды может монтироваться так, чтобы очищенная жидкость подавалась не только на кухню, а во все точки разбора: душевая, бытовая техника, подогрев в бойлере, пр.

Алгоритм работы

Водоснабжение квартиры предполагает поступление двух видов воды: холодной и горячей. Но проблемы с работой теплосетей вынуждают самостоятельно нагревать при помощи водонагревателя подаваемую по магистрали холодную воду. Для очистки жидкости с последующим подогревом предполагается три этапа:

  • Прохождение через механические очистители из полипропилена. Отсекаются крупные нерастворимые фракции песка, глины, пр.
  • Очищение через устройство ультрафильтрации.

Если все же нужно очистить горячую воду, подаваемую по трубам, используются керамические фильтры микрофильтрации. Они выдерживают температуру на входе теплоносителя +70°С. В отличие от стандартных мембран, эффективность которых уменьшается уже при +40°С, керамика устойчива к высоким показателям температуры. Она убивает в фильтрах вредную патогенную флору, осветляет воду, не воздействует на минеральный состав. При этом концентрат в канализационный коллектор не сбрасывается. При давлении воды в водопроводной сети меньше 2,0 кгс/см. кв. для ее подачи предусматривается установка повысительного насоса. Уровень шума при работе оборудования не превышает предельно-допустимых значений.

Преимущества способа ультрафильтрации

Преимущественным и считаются такие характеристики ультрафильтрации:

  • Высокая степень очистки, в том числе, полное удаление коллоидных веществ, взвесей: хлорорганических соединений, тяжелых металлов, крупных фракций, солей жесткости.
  • Дезинфекция (физическое удаление патогенной флоры).
  • Отсутствие накопительного резервуара, «съедающего» пространство комнаты.
  • Автономность работы (без участия человека).
  • Продление срока службы бытовых приборов, техники.
  • Исключение контакта с неочищенной водой и повторного ее заражения.
  • Сохранение минерального состава природной воды.
  • Экологичность.
  • Варианты монтажа (вертикальный, горизонтальный), простота установки.
  • Экономичность: снижение расхода воды, электроэнергии, себестоимости, пр.
  • Компактность установки.
  • Долгий срок службы мембран: 5 лет и более. Ультрафильтрация обеспечивает пользователей прошедшей через систему фильтров вкусной и полезной водой.

Ультрафильтрация - мембранный процесс, занимающий промежуточное место между микрофильтрацией и нанофильтрацией. Мембраны для ультрафильтрации имеют размер пор от 0,05 мкм (минимальных размер пор микрофильтрационных мембран) до 10 нм (максимальный размер пор нанофильтрационных мембрана).

Основная сфера применения ультрафильтрации выделение макромолекулярных веществ из растворов, при этом минимальный предел выделяемых растворенных веществ соответствует молекулярным массам в несколько тысяч Дальтон. Для отделения растворенных органических соединений с молекулярной массой от нескольких сотен до нескольких тысяч Дальтон (Да ) применяет мембранный процесс - нанофильтрация. Ультрафильтрационные мембраны являются пористыми, следовательно задержка частиц определяется в основном формой и размером и пор. Транспорт растворителя в данном случае прямо пропорционален приложенному давлению. При микро- и ультрафильтрации протекают одинаковые мембранные явления и производится одинаковый принцип разделения.

Однако ультрафильтрационные мембраны, в отличии от микрофильтрационных, имеют асимметричное строение. При этом гидродинамическое сопротивление определяется малой долей общей толщины мембраны для ультрафильтрации воды, тогда как при микрофильтрации, видимо, в гидродинамическое сопротивление дает вклад полная толщина мембраны. Толщина верхнего слоя ультрафильтрационной мембраны, как правило, равна не более 1 мкм.

Сечение ультрафильтрационной полисульфоновой мембраны под электронным микроскопом (х 10000)

Промышленное применение технологии ультрафильтрации - фракционирование макромолекул: крупные молекулы задерживаются мембраной, в то время как небольшие молекулы вместе с молекулами растворителя свободно проходят через мембрану. Для подбора ультрафильтрационных мембран, производители используют концепцию молекулярной массы "отсечения". Однако, кроме молекулярной массы на селективность ультрафильтрационных мембран значительное влияние оказывает явление концентрационной поляризации. К примеру, мембрана ультрафильтрации с отсечением 40 КДа полностью проницаема для цитохрома с массой молекулы 14,4 КДа . При этом в смеси цитохрома и альбумина (67КДа ) будет задерживается как альбумин, так и значительная часть цитохрома. Причина данного явления - концентрационная поляризация. Мембрана непроницаема для альбумина, который формирует на поверхности мембраны дополнительный слой, работающий как динамическая мембрана, задерживающая цитохрома. Различные растворенные вещества, такие как, линейные макромолекулы (полиэтиленгликоль, декстран и др.) или глобулярные белки существенно влияют на характеристики мембранного отсечения в процессе ультрафильтрации. Следовательно при подпоре ультрафильтрационных мембран для различных технологических процессов необходимо учитывать влияние концентрационной поляризации и распределение по молекулярным массам, характерное для большинства полимеров.

Ультрафильтрация широко применяется в промышленности и лабораториях для решения задач, связанных с разделением высокомолекулярных и низкомолекулярных соединений. Это очистка сточных вод промышленных предприятий, разделение и концентрирование продуктов в пищевом и молочном производстве, извлечение высокомолекулярных соединений (ВМС) в химической и текстильной промышленности , металлургии, в кожевенной промышленности, а также при производстве бумаги.

Для решения существующих проблем в очистке сточных вод от тяжелых металлов до низких концентраций ПДК создан ряд современных очистных сооружений, позволяющих вести промышленную очистку воды от взвешенных веществ, тяжелых металлов, нефтепродуктов, синтетических поверхностно-активных веществ (СПАВ), и других вредных веществ. Работа очистных сооружений основана на новых технология очистки воды: электрофлотации и ультрафильтрации.

Технологическая схема очистки сточных вод с применением ультрафильтрации

Выше представлена технологическая схема очистки сточных вод гальванического производства с последующим сбросом очищенной воды в систему канализации, либо подачей на установку обратного осмоса для обессоливания при создании оборотного водоснабжения предприятия. Данная система промышленной очистки воды рекомендуется для использования при проектировании новых очистных сооружений, либо реконструкции действующих систем очистки сточных вод для повышения их экологической безопасности и экономической эффективности.

Подобная технология очистки воды успешно реализована на нескольких очистных сооружениях гальванических производств в РФ. Технология предусматривает обработку кислотно-щелочных и хромсодержащих сточных вод в самостоятельных технологических цепочках. Технология обеспечивает глубокую очистку сточных воды от тяжелых металлов до уровня 0,005 мг/л, взвешенных веществ и нефтепродуктов до 0,01-0,05 мг/л. Рекомендуется для вновь строящихся очистных сооружений в регионах с жесткими нормами ПДК.

Установка ультрафильтрации на основе керамических производительностью 2,5 м 3 /час

Представленные технологии нашли применение в модульных, блочно-модульных и сборных установках. Разработаны различные модификации модульных установок в зависимости от состава сточных вод и климатических условий.

Модульные установки очистки воды производительностью от 0,1 до 50 м 3 /ч отвечают современным гигиеническим нормам и предназначены для промышленной очистки воды до требований ПДК рыбохозяйственных водоемов.

Ультрафильтрация - мембранный процесс, находящийся между микрофильтрацией и нанофильтрацией. Ультрафильтрационные мембраны имеют диаметр пор 0,005-0,2 мкм и позволяют задерживать высокодисперсные и коллоидные частицы, макромолекулы с нижним пределом молекулярной массы до нескольких тысяч, микроорганизмы и водоросли. Сравнительная таблица фильтрующих способностей различных мембранных процессов представлена (таблица подготовлена специалистами РХТУ им. Д.И. Менделеева).

Ультрафильтрация это продавливание жидкости через полупроницаемую мембрану, являющейся проницаемой для ионов и малых молекул и, в тоже время непроницаемой для коллоидных частиц и макромолекул. Ультрафильтрация растворов, содержащих молекулы ВМС (высокодисперсных систем), в отличие от ультрафильтрации золей, называют молекулярной фильтрацией. Ультрафильтрацию можно рассматривать как гиперфильтрацию, когда мембрана пропускает только молекулы растворителя или как диализ под давлением. В первом случае мембранный процесс обычно называют обратным осмосом.

Характеристики некоторых ультрафильтрационных мембран

Фирма-
изготовитель
(страна)

Марка мембраны

Материалы
мембраны

Рабочее
давление,
МПа

Проницаемость
G · 10 3 ,
м 3 /(м 2 · ч)

Задерживаемые вещества

Селективность,
%

молекулярная
масса

наименование

«Амикон»
(США)

Полиэлектролитный
комплекс

Раффиноза

Миоглобин

Декстран Т10

Альбумин

Химотрипсиноген

Альдолаза

Апоферритин

19S глобулин

«Миллипор»
(США)

«Дайцел»
(Япония)

Сополимеры
акрилонитрила

Мембраны для ультрафильтрации как правило изготавливаются в виде цилиндрических патронов или пластин из микропористых неорганических материалов, но чаще всего из синтетических полимеров (полиамиды, полисульфоны, полиэфирсульфоны , ПВДФ и пр.). Максимальный размер проходящих через мембрану молекул частиц (частиц) находится в пределах от нескольких мкм до сотых долей мкм. Селективность (разделяющая способность) мембран зависит от их физико-химических свойств и структуры, состава фильтруемой среды, давления, температуры и других факторов.

Ультрафильтрация в качестве метода очистки воды, концентрирования сточных вод, и/или фракционирования ВМС и многокомпонентных систем находит широкое применение в промышленном производстве. Ультрафильтры используют для очистки воды от ионных и не ионных загрязняющих веществ, органических растворителей, дизельного топлива и масел, разделения смесей белков (извлечение фосфолипидов из фосфатидного концентрата), производства витаминов и ферментов. Ультрафильтрацию применяют для микробиологического и дисперсионного анализа, а также анализа загрязнений воздушных масс и водных объектов бытовыми и промышленными отходами.

Для России и стран СНГ проблемой государственного масштаба стало снабжение населения качественной водопроводной водой. Традиционные методы очистки воды плохо справляются с удалением значительного количества новых техногенных загрязняющих веществ.

Изношенность большинства водопроводных магистралей приводит ко вторичному загрязнению воды и учащению аварийных выбросов. Традиционные бытовые магистральные фильтры не справляются с задачей качественной очистки воды. Решением этой проблемы является использование новейшего и перспективного метода ультрафильтрации - мембранного метода очистки воды.

Компания Waterman предлагает Вашему вниманиюустановки ультрафильтрации, успешно решающие целый комплекс задач по очистке воды. Наши специалисты разработают оптимальную технологическую схему обработки воды с использованием технологий ультрафильтрации, осуществят проектирование, монтаж и запуск системы в эксплуатацию.

В промышленном масштабе метод ультрафильтрации для очистки воды стал применяться с конца ХХ века. В год суммарный прирост объемов воды, очищенной с помощью ультрафильтрации, составляет около 25 %.

Острота проблемы с чистой водопроводной водой в странах Азии (таких как Малайзия, Сингапур, Тайвань, Китай), поспособствовала созданию в 1985 году исследовательского центра в Сингапуре.

Центр разработал надёжную и недорогую для этих стран технологию ультрафильтрации. Сейчас бытовой модуль ультрафильтрации в азиатских семьях (например, в Малайзии) - такой же атрибут быта, как телевизор или холодильник.

Технология ультрафильтрации, усовершенствованная и проверенная временем, не осталась незамеченной Европой и Америкой.

Области применения технологии ультрафильтрации

С конца ХХ в. метод ультрафильтрации стал использоваться в промышленном масштабе. На сегодняшний день в мире работают сотни производительностью до 4105 м 3 /сут. Около 25 % составляет ежегодный суммарный прирост объемов воды, обработанной методом ультрафильтрации. Ультрафильтрацией обеспечивается качественная очистка вод поверхностных источников, питьевой, оборотной и технологической воды при минимуме эксплуатационных затрат. Ниже приведён перечень основных областей использования ультрафильтрационной технологии.




Использование метода ультрафильтрации для дезинфекции воды

С помощью стандартных модулей ультрафильтрации производится удаление вирусов и бактерий на уровне не менее 99,99%. В отличие от традиционных методов дезинфекции воды (хлорирование, ультрафиолетовое обеззараживание, озонирование и др.), при ультрафильтрации микроорганизмы физически устраняются из воды. Это достигается за счет того, что в ультрафильтрационной мембране диаметр пор значительно меньше размеров вирусов или бактерий (пора – 0,01 мкм, бактерия – 0,4…1,0 мкм, вирус – 0,02…0,4 мкм). Таким образом, микроорганизмы, находящиеся в воде, не могут проникнуть через такой барьер. В результате устраняется необходимость первичного хлорирования воды, а обеззараживание осуществляется уже непосредственно перед подачей воды потребителю.

Обработка ультрафильтрацией хозяйственно-бытовых и промышленных сточных вод

Во всем мире стараются повторно использовать очищенные сточные воды, которые гораздо выгоднее не сбрасывать в открытый водоем, а после обработки ультрафильтрацией направлять для промышленного использования. Тем самым техногенная нагрузка на водоёмы хозяйственно-питьевого назначения значительно снижается.

Использование ультрафильтрации в качестве предварительной ступени перед системами обратного осмоса

Обычно в для предварительной очистки используются мешочные или патронные фильтры (рейтинг фильтрации 5 мкм). Замена их на ультрафильтрационные модули, имеющие более длительный срок службы, позволит снизить эксплуатационные расходы.

Применение ультрафильтрационных модулей позволяет стабилизировать коллоидный индекс SDI на уровне 1-2, в результате значительно сокращается частота промывок и замен мембран обратного осмоса.

Использование в качестве предварительной фильтрации перед обратным осмосом технологии осветлитель + флокулянт требует тщательного выбора флокулянтов. Катионные флокулянты нельзя использовать, так как обратноосмотические мембраны имеют отрицательный заряд. Анионные и неионогенные флокулянты используются при минимальных дозах. Сложно после блокировки пор флокулянтом восстановить работоспособность мембран. Эта проблема полностью отсутствует при ультрафильтрационной обработке.

Обратноосмотические мембраны при определенных условиях подвержены биообрастанию. Возникновению этой проблемы способствует высокая температура исходной воды, большое содержание “органики” (перманганатная окисляемость более 3,0 мгО 2 /л), длительные межпромывочные циклы, значительная обсемененность исходной воды.

Значительное количество крупномолекулярной “органики”, содержащейся в воде при традиционной технологии осветления, может заблокировать поры обратноосмотических мембран. Процесс ультрафильтрации делает возможной эффективную очистку обратноосмотическими системами воды с очень высоким потенциалом биообрастания (например, очищенными хозяйственно-бытовыми сточными водами).

Ультрафильтрация промывных вод фильтров обезжелезивания, осветления и сорбции

Степень использования воды повышается до 99,8 %, если промывные воды подвергать ультрафильтрации. Этим целям служат ультрафильтрационные фильтр-прессы, которые обеспечивают механическое обезвоживание осадков.

Использование ультрафильтрации для осветления воды

При оценивании новой технологии обращают внимание на себестоимость и качество получаемого продукта. Более низкая себестоимость осветленной воды высокого качества обеспечивается за счет компактности установок ультрафильтрации, простоты их обслуживания и незначительного расхода химических реагентов. В конечном итоге себестоимость осветленной воды, полученной с помощью ультрафильтрации, определяется качеством исходной воды и производительностью установки. Себестоимость очищенной воды для небольших коммерческих установок (производительность менее 100 м 3 /час) находится в пределах 1,5–3,5 руб/м 3 , для установок производительностью более 100 м 3 /час себестоимость очищенной воды ниже: 0,5–2,0 руб/м 3 .

Осветление воды при розливе в бутыли (осветление питьевой и минеральной воды)

Чистота природного источника воды не избавляет от необходимости перед розливом питьевой воды в бутыли пропускать ее через фильтр тонкой очистки.

Очистка воды с помощью чаще всего применяемых для этой цели механических фильтров картриджного типа (например, Big Blue 20) или мешочного типа 1-5 мкм не обеспечивает требуемую степень фильтрации. Наиболее перспективным методом улучшения качества воды (природных вод) является осветление воды методом ультрафильтрации (улучшение качества воды методом стерилизующей ультрафильтрации).

Ультрафильтрация как предварительная ступень очистки перед ионообменными фильтрами

Большие сложности возникают при использовании (особенно в промышленности и энергетике). Гранулометрический состав воды редко учитывается, когда проектируются системы фильтрации воды. Микрофильтрационные и осветлительные фильтры предварительной очистки эффективно удаляют взвешенные частицы размером свыше 1,0 мкм. Ионообменные смолы не пропускают коллоиды величиной 0,1…1,0 мкм, но вместе с тем происходит их «закупоривание». Результатом «закупоривания» является снижение интенсивности ионного обмена и ресурса смол. Чтобы этого избежать, нужно уменьшить мутность исходной воды ниже 3 NTU (нефелометрические единицы мутности). Это позволяет сделать ультрафильтрация (обеспечивает мутность до 0,1 NTU).

Часто имеющиеся в речной воде и воде артезианских скважин коллоиды SiO2 вызывают проблемы в процессе ионного обмена. При значении рН меньше 7 (после H-катионирования) может происходить полимеризация SiO 2 (молекулы объединяются в длинные цепочки). С поверхности смолы такие образования удалить чрезвычайно сложно: требуются длительные слабоэффективные промывки и восстановление ионообменного материала. Для предотвращения необратимого «закупоривания» ионитов достаточно установить перед ионообменными фильтрами систему ультрафильтрации, удаляющую более 95 (а иногда и более 98) % коллоидов SiO 2 . При определенных условиях, например, при наличии в системе не промываемых химическими растворами пространств, происходит рост количества микроорганизмов, которые также служат причиной “закупоривания” ионообменных смол. Кроме того, бывает так, что уплотнения, клапаны и необработанные поверхности, соприкасающиеся с водой, не соответствуют санитарным требованиям и техническим нормам. В таких областях при благоприятных температуре и уровне рН процесс биообрастания активизируется. Использование ультрафильтрации позволяет значительно замедлить протекание этого процесса на поверхности смол.

В нефтехимической, химической промышленности и при очистке сточных вод ионообменные смолы загрязняются содержащимися в воде маслами. Часть масел легко удаляется в процессе осаждения, флотации или коалесценции. Но химически или механически эмульгированные масла плохо удаляются. Часто бывает дешевле заменить смолы, чем пробовать очистить их от масел. Эту проблему решает предварительная ультрафильтрация, обеспечивающая удаление до 99% эмульгированных масел перед последующей очисткой воды смолами.

Часто поверхность фильтрующих гранул и пространство между ними загрязняются высокомолекулярными органическими соединениями. Решить проблему пытаются использованием активированного угля или определённой смеси ионообменных смол. Однако активированный уголь имеет небольшой срок службы и обрастает микроорганизмами, а смолы приходится часто регенерировать (порой неэффективно). Учитывая повышенные эксплуатационные расходы и простои оборудования, мы видим, что ультрафильтрация является экономически более оправданным методом очистки воды от органических примесей.

Обработка ультрафильтрацией вод поверхностных источников и речной, озерной воды

Широко используемые в коммунальном хозяйстве и промышленности России методы осаждения и фильтрования с предварительной коагуляцией с середины ХХ века не претерпели радикальных изменений. Коагуляция эффективно удаляет примеси природного происхождения. Но произошел значительный рост количества техногенных загрязняющих воду веществ, для удаления которых методы отстаивания и фильтрования не всегда могут быть эффективными. Около 1000 контролируемых химических веществ насчитывается по новым санитарным нормативам. При первичном хлорировании воды происходит образование сотен хлорорганических соединений, что вызывает большие проблемы.

О содержании органических веществ судят, как правило, по перманганатной окисляемости воды. Из-за трудностей окисления техногенных органических соединений перманганатом калия истинное качество воды по содержанию «органики» не отражается этим показателем. В процессе наблюдений в течение недели за составом воды в р. Кама замечено, что перманганатная окисляемость менялась в диапазоне от 3,36 до 4,16 мгО 2 /л, в то время как бихроматная окисляемость колебалась от 15 до 43 мгО 2 /л. Колебания показателя обусловлены постоянным изменением состава органических соединений. В таких условиях трудно выбрать оптимальную дозу коагулянта, что способствует нестабильной работе осветлителей и дополнительной нагрузке на последующие стадии очистки. Введение таких дополнительных стадий очистки как озонирование, сорбция активированным углем и др. увеличивает эксплуатационные расходы и, соответственно, себестоимость очищенной воды.

Трудности в обеспечении населения России качественной питьевой водой привели к том, что это стало действительно государственной проблемой. Традиционно используемые способы получения чистой питьевой воды с использованием хлорирования, коагулирования, флотации, отстаивания и фильтрования, обладают следующими существенными недостатками:

  • нестабильность качества очищенной воды;
  • большие ресурсоёмкость и габариты оборудования;
  • опасность образования канцерогенов при использовании хлорсодержащих реагентов при обеззараживании воды;
  • большие расходы дорогих химических реагентов, а также решение задач организации их приготовления и хранения.

Ультрафильтрация лишена вышеперечисленных недостатков. С ее помощью вода очищается от взвешенных частиц, бактерий, вирусов, водорослей, коллоидов и высокомолекулярных органических соединений. Значительно увеличивается эффект осветления и степень извлечения органических соединений при предварительной коагуляции. Эффективность метода ультрафильтрации мало зависит от изменений дозы коагулянта, так как отфильтровывание образующихся хлопьев производится независимо от их размера. Также не требуется продолжительное время для формирования крупных хлопьев и отпадает необходимость в камере хлопьеобразования. Вода, очищенная с помощью метода ультрафильтрации, безопасна по микробиологии и обладает стабильно высоким качеством, которое не зависит от состава исходной воды.

Таким образом, достоинства метода ультрафильтрации - высокая эффективность очистки, низкие эксплуатационные затраты и надежность оборудования - делают его применение выгодным мероприятием. Специалисты компании Waterman помогут Вам его осуществить !

Наша компания предоставляет свои услуги по продаже, проектированию и установке систем водоочистки как промышленным производствам любого масштаба, так ичастным лицам. Мы работаем качественно и оперативно !