» » Светодиодный куб 3х3х3 своими руками схема. Светодиодный куб. Когда ты немножко устал

Светодиодный куб 3х3х3 своими руками схема. Светодиодный куб. Когда ты немножко устал

В проекте предложена конструкция светодиодного куба (LED cube) 4x4x4 стоимостью около 15 долларов.

В кубе использовано 64 зеленых светодиода, которые формируют 4 слоя и 16 колонок. Управление кубом реализуется на базе Arduino. Приведен пример программы для Arduino Uno, в которой реализовано управление каждым отдельным светодиодом из всего массива.

Необходимые детали для проекта

  • 64 светодиода
  • 4 резистора на 100 Ом
  • Коннекторы для распайки
  • Проводники
  • Макетная плата для распайки
  • Коробка
  • Источник питания на 9 В
  • Arduino Uno

Инструменты, которые могут вам пригодиться, приведены на фото ниже.

Формируем основу светодиодного куба

Можете воспользоваться эскизом, который приведен . Распечатайте его и наклейте на картонную коробку. При печати проверьте, чтобы был выставлен фактический размер и горизонтальная ориентация. Карандашом сделайте отверстия в узловых точках. Проверьте, хорошо ли садятся светодиоды в подготовленные отверстия.

Собираем светодиодный куб

Возьмите 64 светодиода и проверьте их работоспособность, подключив каждый к пальчиковой батарейке. Это, конечно, скучная процедура, но она необходима. Иначе из-за одного нерабочего светодиода впоследствии может быть куча проблем. Установите 16 светодиодов в отверстия в соответствии со стрелками на распечатке. Красные стрелки соответствуют плюсу (анод), синие - минусу (катод). Все аноды соедините между собой. После этого переверните коробку и вытолкните светодиоды. Выталкивайте аккуратно, чтобы не повредить собранный слой. Все. Первый слой готов. Аналогичным образом формируем еще три слоя. После соединяем четыре получившихся слоя с помощью свободных катодов. Советую соединять контакты начиная с центра и перемещаясь к периферии. Светодиодный куб начинает принимать необходимые очертания!

Установка светодиодного куба

Сделайте разметку на макетной плате с помощью маркера. Учтите, что размеченный прямоугольник должен быть немного меньше коробки, на которой будет установлен ваш куб. После разметки сделайте небольшой паз вдоль линии будущей грани и аккуратно отломайте ребра макетной платы. Сделайте 20 отверстий на верхней части вашей коробки для куба. Можно разметить места для сверления по соответсвующим отверстиям макетной платы.

Подключаем светодиодный куб

Сначала разделите вашу рейку коннекторов на три части таким образом, чтобы они подошли к цифровым и аналоговым пинам Arduino Uno. Зачистите и установите на вашей маетной плате в коробке 16 проводов для цифровых входов (рядов). 4 провода от аналоговых входов подключите с использованием резисторов на 100 Ом. Теперь переходите к подключению концов проводов к трем рейкам коннекторов. Подключение реализовано таким образом, что есть возможность управлять светодиодами вдоль трех осей. Колонки соответсвуют осям X и Y. Плюс к этому, благодаря четырем слоям мы получаем координату Z. Если вы посмотрите вниз с угла светодиодного куба, первый квадрант будет соответствовать обозначению (1, 1). Таким образом, каждый светодиод может быть инициализирован по подобной же методике. Давайте рассмотрим пример. Посмотрите на рисунок выше и найдите светодиод A(1,4). "A" означает, что это один и первых слоев, а "(1,4)" соответсвтует координатам X=1, Y=4.

Схема подключения

Ряды/колонки

Слои

[Пины для слоев]

Подключаем источник питания для Arduino

Для питания платы можно использовать отдельный адаптер на 9 вольт, 1 ампер. Можно использовать переходник для батарейки типа крона и питать от нее. В любом случае, вам понадобится сделать еще одно отверстие для провода питания. Когда будете делать отверстие, предусмотрите его размер немного большим, чем сам коннектор.

В общем то все, что вам после этого останется - загрузить скетч на Arduino и наслаждаться результатом:

Ваш куб готов!

Видео собранного светодиодного куба 4x4x4

Как работает декоративная скульптура из светодиодов? Можно ли её собрать самостоятельно? Сколько нужно светодиодов и что нужно кроме них? На все эти вопросы вы найдете ответ в этой статье.

Led куб – что нужно для самостоятельной сборки

Если вы увлекаетесь самоделками, любите ковыряться в схемах электроники – попробуйте собрать светодиодный куб своими руками. Для начала нужно определиться с размерами. Поняв принцип работы устройства, вы можете модернизировать схему как с целью увеличения светодиодов, так и с меньшим их количеством.

Светодиодный куб с гранями на 8 диодов

Давайте разберем как это работает на примере куба со стороной в 8 светодиодов. Такой куб может испугать начинающих, но если вы будете внимательным при изучении материалов – вы с лёгкостью освоите его.

Чтобы собрать led cube 8x8x8 вам понадобится:

  • 512 светодиодов (например 5мм);
  • сдвиговые регистры STP16CPS05MTR – 5 шт;
  • микроконтроллер для управления, см. Arduino Uno или любую другую плату;
  • компьютер для программирования системы;

Принцип работы схемы

Маленькие светодиоды типа 5 мм потребляют незначительный ток – 20 мА, но вы собираетесь зажигать их довольно много. Источник питания 12В и 2А прекрасно подойдет для этого.

Подключить все 512 светодиодов индивидуально у вас не выйдет потому, что вряд ли вы найдете микроконтроллер (МК) с таким количеством выводов. Чаще всего встречаются модели в корпусах с количеством ног от 8 до 64. Естественно вы можете найти варианты и с большим количеством ножек.

Как же подключить столько светодиодов? Элементарно! Сдвиговый регистр – микросхема которая может преобразовывать информацию из параллельного вида в последовательный и наоборот – из последовательного в параллельный. Преобразовав последовательный в параллельный вид, вы получите из одной сигнальной ножки 8 и более, в зависимости от разрядности регистра.

Ниже приведена диаграмма иллюстрирующая принцип работы сдвигового регистра.

Когда на последовательный вход Data вы подаете значение бита, а именно ноль или единицу, она по фронту тактового сигнала Clock передается на параллельный выход номер 0, не забывайте, что в цифровой электронике нумерация идёт с нуля).

Если в первый момент времени была единица, а затем в течении трёх тактовых импульсов на входе вы задали нулевой потенциал, в результате этого вы получите такое состояние входов «0001». Вы можете это наблюдать на диаграмме на строках Q0-Q3 – это четыре разряда параллельного выхода.

Как применить эти знания в построении LED куба? Дело в том, что можно применить не совсем обычный сдвиговый регистр, а специализированный драйвер для светодиодных экранов — STP16CPS05MTR. Он работает по такому же принципу.

Как соединять светодиоды?

Разумеется, что использование драйвера не полностью решит проблемы связанную с подключением большого количества светодиодов. Для подключения 512 светодиодов понадобится 32 таких драйвера, а от микроконтроллера еще больше управляющих ножек.

Поэтому мы пойдём другим путём и объединим светодиоды в строки и столбцы, таким образом мы получим двухмерную матрицу. Лед куб же занимает все три оси. Доработав идею объединения светодиодного куба 8x8x8 у которого светодиоды объединены в группы, можно прийти к такому выводу:

Объединить слои светодиодов (этажи) в схемы с общим анодом (катодом), а столбцы в схемы с общим катодом (или анодом, если на этажах объединяли катоды).

Чтобы управлять такой конструкцией нужно 8 x 8 = 16 управляющих пинов на колонки, и по одной на каждый этаж, всего этажей тоже 8. Итого вам нужно 24 управляющих канала.

На колодку input подаются сигнал с трех ножек микроконтроллера.

Чтобы зажечь необходимый светодиод, например, расположенный на первом этаже, в первой строке третий по счету, вам нужно подать минус на столбец номер 3, а плюс на этаж номер 1. Это справедливо если вы собрали этажи с общим анодом, а столбцы – катодом. Если наоборот, соответственно и управляющие напряжения должны быть инвертированы.

Для того, чтобы вам было удобно спаивать куб из светодиодов вам нужно:

Для корректной работы куба из светодиодов нужно собрать его по слоям с общим катодом, а столбцы – анодом. Подключить к выводам Arduino то что на схеме обозначено, как input в такой последовательности:

№ вывода Arduino Название цепи
2 LE
3 SDI
5 CLK

Что делать если у меня нет таких навыков?

Если вы не уверены в своих силах и знаниях электроники, но хотите себе такое украшение для рабочего стола, вы можете купить готовый куб. Для любителей мастерить простенькие электронные поделки, есть отличные варианты проще с гранями 4x4x4.


Куб с размером грани 4 диода

Готовые наборы для сборки можно приобрести в магазинах с радиодеталями, а также их огромный выбор на aliexpress.

Сборка такого куба разовьет у начинающего радиолюбителя навыки пайки, точность, правильность и качество соединений. Навыки работы с микроконтроллерами пригодятся для дальнейших проектов, а с помощью Arduino вы можете научится программировать простые игрушки, а также средства автоматизации для быта и производства.

К сожалению, из-за особенностей языка программирования Arduino – sketch есть некие ограничения в плане быстродействия, но поверьте, что когда вы упретесь в потолок возможностей этой платформы, скорее всего освоение работы с «чистыми» МК у вас не вызовет существенных трудностей.

Куб? Это - куб, по всему объему которого расположены светодиоды. И каждый светодиод (можно цветной) - управляется отдельно. С помощью светодиодного куба можно создавать различные световые шоу и анимацию. Светодиодный куб может отображать различную световую анимацию, которая уже запрограммирована в нем. Сложные схемы 3Д светодиодных кубов даже могут отображать различные объемные слова и надписи. Проще говоря светодиодный куб по своей сути является объёмным монитором, только с низким разрешением, который позволяет отображать пространственные структуры и графику. Конечно, это решение не подходит для просмотра видео, но может быть хорошо использовано для оформления шоу и презентаций, для развлечений и выставок, рекламы и дизайна. Думаю, многим хотелось собрать такой LED кубик, но не у всех была возможность приобрести микроконтроллер, и конечно не все умеют программировать. Поэтому вот очень простая схемотехническая альтернатива:

Предложенный вариант светодиодного куба не нуждается в программировании, схема проста и все детали доступы. А микросхема CD4020 дает разнообразные композиции, почти не уступающие программируемым кубикам. Привожу список используемых в кубе деталей с описанием:

1)КР1006ВИ1 (NE555)


Микросхема включает около 20 транзисторов, 15 резисторов, 2 диода. Выходной ток 200 мА, ток потребления примерно на 3 мА больше. Напряжение питания от 4,5 до 18 вольт. Точность таймера не зависит от изменения напряжения питания и составляет не более 1% от расчетного значения.

2) К561ИЕ16 (CD4020, MC14020)


Это 14-разрядный двоичный счетчик-делитель.


3)Светодиоды - на ваш вкус, 27шт;
4)Резистор 33К;
5)Конденсатор 10мкФ;
6)Микро выключатель с фиксацией (не обязательно);
7)Крона 9В;
8)Панели для микросхем (не обязательно).

Итак, рисуем печатную плату светодиодный куба на стеклотекстолите и погружаем в хлорное железо .

А пока наша плата травится займемся самой сложной частью - самим LED кубиком. Просверлим отверстия в фанере или плотном картоне под светодиоды и вставим их туда. Теперь все катоды (минусы) сгибаем по часовой стрелке и спаиваем их. К среднему светодиоду припаиваем проволочки самостоятельно.


Таким же образом делаем остальные этажи светодиодного куба.


Теперь надо их спаять вместе. Только на этот раз спаиваем аноды светодиодов (плюсы).


Припаиваем последний третий этаж. Готово!!)))


Берем нашу уже протравившуюся плату и сверлим отверстия. Сначала к печатной плате припаиваем перемычки, а потом детали.


И наконец, последний штрих – припаиваем кубик.


Теперь подключаем 9В и ждём результат. УРА - работает:


Но если поднять питание схемы 12В может сгореть микросхема CD4020. Именно по этому я и поставил крону 9В. В этом есть свои плюсы: кубик можно таскать с собой, ему не нужна розетка и микросхема уже не сгорит. Но есть и минусы – периодически придется менять батарейку. Для своего светодиодного куба я сделал коробочку из картона. И вот что у меня в итоге получилось:

Материал и фото предоставил [)еНиС.

Обсудить статью СВЕТОДИОДНЫЙ КУБ

В данной статье я пошагово расскажу об изготовлении 3D LED куба, с размерностью 3х3х3. Управление LED осуществляется при помощи контроллера Arduino.

Отличительной особенностью данного проекта от других является:

Небольшое число дополнительных компонентов, подключается напрямую к Arduino без использования различных мультиплексоров и т.п.

Простая для повторения принципиальная схема с множеством фотографий и разьяснений.

Использование универсальной библиотеки, что значительно упрощает написание программы.

Итак, нам понадобится:

  • макетная плата
  • 3 NPN транзистора (2N2222, 2N3904, BC547 и т.п.)
  • 12 резисторов (~220 Ом и 22 кОм)
  • 13 коннекторов (папа или мама)
  • 27 светодиодов (LED)
  • соединительные провода


А сначала, немного видео работы устройства:

Итак, посмотрели видео? Ну а теперь поехали!

Шаг 1. Подготовка LED

Этот шаг практически ни чем не отличается от предыдущего проекта , за исключением соответственно размерностью. Куб 4х4х4 более сложен, т.к. требует введения в схему дополнительный элементов. У нас же куб будет с 3 уровнями, по 9 LED в каждом.

В каждом наборе из 9-ти LED, все катоды соединены между собой, т.е. подключены по схеме с общим катодом (минус). Далее, наборы мы будем называть "уровнями". Каждый LED соединен анодом с LED другого уровня (нижестоящими или вышестоящими). Далее, по тексту я буду называть это колоннами, т.е. в одной колонне соединено 3 светодиода анодами, а на одном уровне соединено 9 LED катодами.

Как видно на фото выше, для изготовления куба я использовал старый шаблон от проекта 4х4х4 светодиодного куба. Отверстия в дереве просверлены под головку светодиода, расстояние между отверстиями составляет приблизительно 15мм.

После того, как приспособа сделана, пора приступить к формовке выводов LED. Катоды всех светодиодов необходимо аккуратно согнуть на 90 градусов. Направление изгиба вывода должно быть одинаковым у всех LED. Как определить где катод, а где анод у светодиода читайте здесь или здесь.

Шаг 2. Сборка куба

Разместите первые девять светодиодов в деревянном приспособлении. С позиционируйте направление изогнутых ножек в одном направлении, скажем по часовой стрелке (или против часовой, это не принципиально).

При помощи "крокодилов" зафиксируйте ножки LED и спаяйте их вместе. В самом конце припаяйте центральный LED. После того, как один уровень закончен, можно проверить правильность подключений LED при помощи батарейки или мультиметра. Т.к. потом, что-либо отпаять будет очень сложно, особенно если это центральный LED.

Таким образом сделайте все три уровня. После этого, необходимо установить и припаять уровни друг над другом. При этом важно соблюсти заданное расстояние. Если в приспособлении расстояние между светодиодами было 15мм, то и расстояние между уровнями у вас должно быть 15мм, иначе получится вытянутый или сжатый куб.

Куб готов. Теперь можно разместить его на макетной плате.

Шаг 3. Схемотехника

Схема устройства простая. Каждая из девяти колонн подключена к выводам Arduino через токоограничительные резисторы. А все 3 уровня подключены к общему выводу через NPN -транзисторы, которые, в свою очередь подключаются к Arduino.


Т.о. используется только 12 выводов Arduino. В один момент времени будет загораться LED только одного уровня, но за счет быстрого переключения между уровнями, будет казаться, что одновременно горят все уровни (в зависимости от программы).

Первым делом необходимо припаять 9 резисторов. Я использовал резисторы сопротивлением 220 Ом, которые ограничивают ток на уровне 22 мА. Номинал резисторов зависит от типа применяемых светодиодов, и варьируется от 135 до 470 Ом. Более точный расчет резистора для светодиода можно произвести здесь: LED калькулятор. Каждый вывод Arduino способен выдать до 40 мА.

Резисторы на плате, я припаял вертикально. После, я наклеил слой изоленты, чтобы не коротнуло с перемычками.

Следующим этапом будет монтаж радиоэлементов для управления уровнями. Здесь используется три NPN-транзистора. Базы транзисторов, через резистор 22 кОм подсоединяются к выводам Arduino. Т.о. контроллер открывает транзистор и весь уровень LED соединяется с "общим".

Шаг 4. Софт

В интернете я нашел несколько примеров управления подобными LED кубами. Но во всех них требовался огромный начальный массив bin или hex данных. Я все решил написать свою программу управления.

Первой задачей было сделать доступное для понимания соответствие программы и железа. Я принял решение обращаться к уровням и колоннам, вместо использования RAW-данных порта или традиционных x, y, z. Второй задачей было сделать базовые функции куба, такие как включение/отключение отдельного светодиода и др.

Также, я решил ввести две дополнительные возможности для реализации различных эффектов. Первая это буфер, который позволяет реализовывать основные функции для реализации сложных шаблонов, и вторая - это функция последовательности.

Всю эту функциональность я сделал в виде классов и сделал библиотеку Arduino, которую можно использовать для других проектов и даже с другой размерностью куба.

На youtube часто попадаются интересные проекты. Одним из таких, является, светодиодный куб. Прелесть данного устройства в том, что выводится настоящее 3D изображение. Можно рисовать любые объемные анимированные фигуры. Но в пределах выбранного разрешения куба.

За основу была взята статья с радиокота (кто захочет может нагуглить). Размер куба 5х5х5 выбран не случайно. Чтобы собрать данный куб понадобится 5*5*5=125 светодиодов. Если сравнить с еще одним популярным вариантом 8*8*8=512, т.е. количество светодиодов увеличится в 4 раза. Поэтому оптимальным мне кажется 5х5х5.

У меня не было времени заказывать светодиоды, поэтому покупал в розницу. К сожалению, в наличии, были только зеленые прозрачные 5мм, поэтому финальный результат сильно пострадал. Синие матовые смотрятся более эффектно, но увы. Матовые светодиоды, рекомендуется брать потому, что прозрачные засвечивают соседние светодиоды и создается эффект, что не горящий светодиод светится.

Начал непосредственно с самого куба. Нарисовал матрицу размером 100х100. Расстояние между кружками 20мм. Диаметр 5мм. Распечатал на бумаге и приклеил к деревяшке.

Просверлил отверстия. Хитро загибаем катод (-) светодиода. Анод сгибаем под 90 градусов.

Катод оставляем торчать к верху, а анод припаиваем к соседнему светодиоду. Получается «этаж» светодиодов с общим «+».

Для усиления конструкции слева припаял еще проводник. Первый этаж готов. Аналогично делаем еще 4 этажа.

Собираем все этажи вместе. Для этого припаиваем к предыдущие этажи к последующим.

Для основания использовал фольгированный стеклотекстолит размером 100х100. Места для пайки светодиодов вытравил. В результате получилась следующая конструкция:

Не совсем ровно, но все легко подгибается. Теперь непосредственно к схеме. Для сборки необходимо:

  1. 25 резисторов 150-220 Ом,
  2. 125 светодиодов,
  3. 5 конденсаторов 0,1мкФ (ставятся по питанию триггеров),
  4. 2 конденсатора 22пФ,
  5. Atmega16,
  6. кварц 12-16МГц,
  7. 5 резисторов 2,2коМ,
  8. 5 триггеров 74hc574,
  9. 5 транзисторов BC558.
  10. 1 конденсатор 100мкФ (по питанию обязательно!!! иначе схема работать не будет)

С одной стороны тут все просто, но нужно не запутаться. В отличие от предыдущих проектов здесь используется Atmega16(Atmega16A-16PU). Я использовал рабочую частоту 12МГц, на 16МГц будут чуть быстрее светодиоды переключаться. Кроме того, здесь используются триггеры. Чтобы понять зачем, нужно проникнуться логикой схемы.

Все входы триггеров подключены параллельно. Допустим нам нужно включить первый светодиод на 2 этаже (D2.1) и при этом не включить светодиоды на 1,3,4,5 этаже (D1.1, D3.1, D4.1, D5.1). Выводим на PORTC.0=0, так как именно 0 в данном случае включает светодиод. На входе триггера появляется 0, однако на выходе его состояние не меняется. Для изменения состояния нужно подать импульс на вход CLK, т.е. вывести поочередно, на ножку PA1 логический ноль и логическую единицу. Теперь все катоды DA1.1-DA5.1 подключены к земле, чтобы зажечь именно D2.1, нужно всего навсего включить 2 этаж, т.е. открыть транзистор Q2, вывести логический ноль в PD6.

Свои эффекты писать пробовал, получилось, но как то в голову не пришло ничего, чего не было в готовых прошивках. Поэтому итоговой взял готовую прошивку, для куба 5х5х5 в интернете нашлось несколько вариантов. Чистого времени на сборку ушло 3 дня. Хороший подарок, собранный своими руками.

На последок, видео получившегося куба, в темноте смотрится особенно эффектно.